

THE EVOLUTION OF DUST

ANTONIA BEVAN, UCL FORMATION IN SN 20051P

MIKE BARLOW, ILSE DE LOOZE, ROGER WESSON, GEOFF CLAYTON, KELSIE KRAFTON, MARIA NICULESCU-DUVAZ, DAN MILISAVLJEVIC, MIKAKO MATSUURA, JEN ANDREWS

OVERVIEW

• DUST IN CCSNE

MODELLING DUST-AFFECTED LINE PROFILES IN CCSNE

• DUST FORMATION IN SN 2005IP

CONCLUSIONS AND FUTURE WORK

SCUBA: IR-emitting high redshift galaxies

LARGE MASSES OF DUST ARE SEEN IN THE EARLY UNIVERSE

Herschel - SPIRE (16hrs): high redshift dusty galaxies

SO WHERE DOES IT COME FROM?

CORE-COLLAPSE SUPERNOVAE?

LARGE MASSES OF COLD DUST (0.1 - 1.0 M $_{\odot}$) HAVE BEEN DETECTED IN THE FAR-IR IN A FEW CCSNE AND SNRs

SN 1987A @ 30YR: 0.4 - 0.6 M $_{\odot}$ (MATSUURA ET AL. 2015)

CORE-COLLAPSE SUPERNOVAE?

LARGE MASSES OF COLD DUST (0.1 - 1.0 M $_{\odot}$) HAVE BEEN DETECTED IN THE FAR-IR IN A FEW CCSNE AND SNRs

THE CRAB NEBULA @ 1000YR: 0.2 - 0.4 M $_{\odot}$ (OWEN & BARLOW 2015) 0.1 - 0.2 M $_{\odot}$ (GOMEZ ET AL. 2012B)

CORE-COLLAPSE SUPERNOVAE?

LARGE MASSES OF COLD DUST (0.1 - 1.0 M $_{\odot}$) HAVE BEEN DETECTED IN THE FAR-IR IN A FEW CCSNE AND SNRs

Herschel, Planck and Spitzer imaging

Careful modelling by De Looze et al 2016 distinguished cold ejecta dust (blue) from interstellar clouds (red)

CASSIOPEIA A @ 330YR: 0.3 - 0.5 M $_{\odot}$ (DE LOOZE ET AL. 2016)

DUST MASS ESTIMATES ARE GENERALLY INFERRED FROM FITTING THE IR SED...

... BUT THERE ARE DIFFICULTIES WITH THIS

 Far-IR observations are required to trace cold dust masses

 Difficult to distinguish between preexisting dust and newly-formed dust

• Difficult to trace location of dust

SN 1987A [OI] DOUBLET AT 529D & 739D (LUCY ET AL. 1989)

THE LATTER PROFILE IS SUBSTANTIALLY BLUE-SHIFTED

AN ALTERNATIVE METHOD IS TO MODEL BLUE-SHIFTED LINE PROFILES IN OPTICAL/IR

Monte Carlo radiative transfer code

Dust absorption and scattering

Smooth or clumped dust distribution Smooth or clumped emissivity distribution

DAMOCLES

Simple electron scattering

Any dust grain size distribution

Any combination of dust species

Velocity field at fixed time

WHY TYPE 11n?

- Visible years after outburst due to ongoing interaction
- Cool dense shell may provide ideal conditions for rapid dust formation behind reverse shock
- Can potentially gain insight into destructive effects of reverse shock on ejecta dust on short timescales
- Useful to distinguish newly-formed dust in ejecta/CDS from pre-existing circumstellar dust

NGC 2906 - 30 MPC - TYPE IIN SN 20051P

DUSTIN SN2005IP FROM SPITZER

- Dust predicted from IR data (Fox et al. 09, 10)
- ~0.05 M_☉
 'warm' dust
 attributed to
 pre-existing dust
 in CSM
- 5 x 10⁻⁴ M_☉ of 'hot' dust formed @ 936d in CDS or ejecta

Optical spectra show increasing blueshifting in broad H α at early times (61d - 173d)

Attributed to dust formation in ejecta

(Smith et al. 09)

Smith et al. 2009

Optical spectra also show increasing blueshifting in postshock Hel 7065 at later times (413d -900d)

Attributed to dust formation in postshock region

(Smith et al. 09)

early time (<200d) broad lines (~15,000 km/s)

POST-SHOCK EMISSION + EJECTA DUST

later time (>200d) intermediate width lines (~3,000 km/s)

POST-SHOCK EMISSION + POST-SHOCK DUST

later time (>200d) intermediate width lines (~3,000 km/s)

EARLY-TIME BROAD EJECTA EMISSION + EJECTA DUST

LATE-TIME POST-SHOCK EMISSION + EJECTA DUST

LATE-TIME POST-SHOCK EMISSION + POST-SHOCK DUST

POST-SHOCK DUST FORMATION

Dust formation in post-shock region leading to plateau in dust mass

EJECTA DUST

Optically thick dust at later epochs lower limit

EJECTA DUST

Grain size crucial for determining dust mass

SN 1987A DUST MASS EVOLUTION FROM SED AND LINE PROFILE FITTING

SN 2005IP VS SN 1987A

SN 2005IP VS OTHER CCSNE EJECTA DUST MASS SUMMARY FROM LINE PROFILE FITTING

Altered from Gall et al. 2014

FUTURE WORK

BAYESIAN MODELLING RIGOROUS PARAMETER SPACE INVESTIGATION USING AN MCMC ENSEMBLE SAMPLER

FUTURE WORK

CLUMPS

PRELIMINARY RESULTS SUGGEST CLUMPING AFFECTS DUST MASSES BY A FACTOR OF A FEW

CONCLUSIONS

- Either dust in the ejecta or dust in the post-shock zone (or both) could account for observed asymmetries but ejecta dust gives better line profile fits
- Dust masses can be well-constrained given dust properties (in some cases even without)
- Initial ejecta dust formation rate is consistent with other CCSNe but possibly hints at dust destruction earlier than in non-interacting SNe