

Constraints on Jets in Hydrogen-poor Superluminous Supernovae

Deanne Coppejans

R. Margutti, C. Guidorzi, R. Chornock, M. Drout, W. Fong, M. Bietenholz, L. Chomiuk, G. Terreran, B.A. Zauderer, G. Migliori, E. Berger, D. Milisavljevic, M. Nicholl, A. Mac Fadyen, P. Blanchard, P. Challis, J. Parrent, K. Alexander

C I E R A

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

Extra radioactive material

Interaction with CSM

Central engines

Extra radioactive material

Interaction with CSM

Central engines

Possible Mechanisms:

- Magnetar Model (e.g. Kasen+ 2010, Woosley 2010)
- Accretion onto a black hole (e.g. Dexter & Kasen 2013)

Extra radioactive material

Interaction with CSM

Central engines

Evidence suggesting likely central engines (CEs):

- 1-5 ms Magnetar CEs 10¹³-10¹⁵ G fit the optical light curves (e.g. Dessart+ 2012, Inserra+ 2013, Nicholl+ 2015, Lunnan+ 2016...)
- SCP06F6 (Levan+ 2013, Metzger+ 2017) and Gaia16apd (Nicholl+ 2017, see however Yan+ 2017)

Extra radioactive material

Interaction with CSM

Central engines

Evidence suggesting likely central engines (CEs):

- 1-5 ms Magnetar CEs 10¹³-10¹⁵ G fit the optical light curves (e.g. Dessart+ 2012, Inserra+ 2013, Nicholl+ 2015, Lunnan+ 2016...)
- SCP06F6 (Levan+ 2013, Metzger+ 2017) and Gaia16apd (Nicholl+ 2017, see however Yan+ 2017)
- Support for a connection between long GRBs and SLSNe-I:
 - Preference for metal-poor host galaxies (e.g. Lunnan+ 2014, ..., see however Angus+ 2016)
 - Have broad spectral features (Liu+ 2017)
 - GRB associated SN2011kl (Kann+ 2016) showed SLSN features (Greiner+ 2015)
 - Similarities in nebular spectra between SLSN-I 2015bn and GRB associated SN1998bw suggest progenitor cores with a similar structure (Nicholl+ 2016)
 - Unifying model that can produce jets & SN (Metzger+ 2015, Margalit+ 2018, Soker+ 2017)

Extra radioactive material

Interaction with CSM

Central engines

Possible Mechanisms:

- Magnetar Model (e.g. Kasen+ 2010, Woosley 2010)
- Accretion onto a black hole (e.g. Dexter & Kasen 2013)

Have we seen a jet? **Problem:** X-ray and radio emission are produced by relativistically moving ejecta X-ray Radio

Comparison to other classes of massive stellar explosions from H-stripped progenitors

> Modified from Coppejans+ 2018 **5**

Comparison to other classes of massive stellar explosions from H-stripped progenitors

> Modified from Coppejans+ 2018 **5**

Comparison to other classes of massive stellar explosions from H-stripped progenitors

> Modified from Coppejans+ 2018 **5**

Off-axis collimated jets?

Coppejans+ 2018

Methodology

Jet light curves depend on:

- Energy
- Collimation angle
- Density of the surrounding medium
- Density profile of the surrounding medium
- Viewing angle
- Microphysical shock parameters

Procedure:

- Modelled light curves with high-resolution 2D relativistic hydrodynamical jet simulations (Boxfit v2, van Eerten+ 2012)
- · Generated a grid of models for these parameters
- Used radio limits to rule out certain parameters

Results: Constraints on off-axis jets

Constraints on a central engine

Constraints on a central engine

Constraints on a central engine

Constraints on uncollimated outflows

For a SSA spectrum:

- Radius ($L_{_{\nu p}}, \nu_{_p})$
- Magnetic field ($L_{\nu p}$, ν_p)
- Mass loss rate ($L_{_{\nu p}},\,\nu_{_{p}},\,t_{_{p}}$)

... following Chevalier 1998, Chevalier & Fransson 2006, Soderberg+ 2012

Constrained these properties with SLSN-I 2017egm

Constraints on uncollimated outflows

Summary

Do Hydrogen poor Super-luminous Supernovae launch jets?

- In this sample we rule out on-axis jets of the kind detected in GRBs
- If the SLSNe-I in this sample have off-axis GRB-like jets, then:
 - the jets have $E_{k,iso} < 10^{53}$ erg, and the progenitors had $\dot{M} < 10^{-4} M_{_{O}}y^{-1}$
 - we rule out off-axis jets at densities and energies equivalent to the higher end of the range shown by GRBs
- If the SLSNe-I in this sample have off-axis jets collimated to 30°, then the jets have $E_{k,iso} < 10^{53}$ erg, and the progenitors had $\dot{M} < 10^{-5} M_0 y^{-1}$

Constraints on uncollimated outflows:

- SLSNe-I radio limits rule out emission of the kind seen in relativistic SNe
- The deepest SLSN-I limits rule out emission of the kind found in faint uncollimated GRBs (except for GRB 060218) and many SNe
- If SLSN 2017egm was a spherical outflow, then it had an energy $\lesssim 10^{48}~erg$

More observations needed:

- Nearby systems
- Earlier times
- <u>Later times</u>

