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Superluminous supernovae (SLSNe)
are 10-100 x more luminous than ‘normal’ supernovae (SNe)
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Central enginesInteraction with CSMExtra radioactive material

Possible powering mechanisms for SLSNe-I



  2

Central enginesInteraction with CSMExtra radioactive material

● Large quantities of 56Ni – “pair instability SNe”
(Woosley+ 2007, Gal-Yam+ 2009)

● Few possible candidates
(e.g. Gal-Yam+ 2009, Terreran+ 2017)

● From some SLSN-I, the required 56Ni quantities do not match the:
   - Bright UV emission
   - Decay rate

- Inferred ejecta mass

Possible powering mechanisms for SLSNe-I
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Central enginesInteraction with CSMExtra radioactive material

● Smith & McCray 2007; Chevalier & Irwin 2011
   Ginzburg & Balberg 2012

● Plays a role in SLSNe-II
    (e.g. Smith+ 2007, Chatzopoulos+ 2011)

● Difficult to explain lack of narrow
emission lines in SLSNe-I

● At least some SLSN-I progenitors are likely to be compact stars 
surrounded by a low density medium     (Margutti+ 2017)

Credit: Hubble/ESA

Possible powering mechanisms for SLSNe-I
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Central enginesInteraction with CSMExtra radioactive material

Possible Mechanisms:
● Magnetar Model
    (e.g. Kasen+ 2010, Woosley 2010)
● Accretion onto a black hole

(e.g. Dexter & Kasen 2013)

Credit: NASA/JPL-Caltech Credit: NASA

Possible powering mechanisms for SLSNe-I
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Central enginesInteraction with CSMExtra radioactive material

Evidence suggesting likely central engines (CEs):

● 1-5 ms Magnetar CEs 1013-1015 G fit the optical light curves
(e.g. Dessart+ 2012, Inserra+ 2013, Nicholl+ 2015, Lunnan+ 2016…)

● SCP06F6 (Levan+ 2013, Metzger+ 2017) and Gaia16apd (Nicholl+ 2017, see however 
Yan+ 2017)

Possible powering mechanisms for SLSNe-I
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Central enginesInteraction with CSMExtra radioactive material

Evidence suggesting likely central engines (CEs):

● 1-5 ms Magnetar CEs 1013-1015 G fit the optical light curves
(e.g. Dessart+ 2012, Inserra+ 2013, Nicholl+ 2015, Lunnan+ 2016…)

● SCP06F6 (Levan+ 2013, Metzger+ 2017) and Gaia16apd (Nicholl+ 2017, see however 
Yan+ 2017)

● Support for a connection between long GRBs and SLSNe-I:
● Preference for metal-poor host galaxies

(e.g. Lunnan+ 2014, …, see however Angus+ 2016)
● Have broad spectral features (Liu+ 2017)
● GRB associated SN2011kl (Kann+ 2016) showed SLSN features (Greiner+ 2015)
● Similarities in nebular spectra between SLSN-I 2015bn and GRB associated 

SN1998bw suggest progenitor cores with a similar structure (Nicholl+ 2016)
● Unifying model that can produce jets & SN

(Metzger+ 2015, Margalit+ 2018, Soker+ 2017)

Possible powering mechanisms for SLSNe-I
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Central enginesInteraction with CSMExtra radioactive material

Possible Mechanisms:
● Magnetar Model
    (e.g. Kasen+ 2010, Woosley 2010)
● Accretion onto a black hole

(e.g. Dexter & Kasen 2013)

Credit: NASA/JPL-Caltech Credit: NASA

Possible powering mechanisms for SLSNe-I
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X-ray Radio

? ?

Problem:
X-ray and radio emission are produced by

relativistically moving ejecta

Have we seen a jet?
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X-ray : Margutti+ 2017

The hunt

Radio: 9 SLSNe-I, 26-318 days post 
explosion

PS1-10ky
PS1-10awh
PS1-12fo
IPTF15cyk
SN 2015bn
PTF09cnd

PS1-10bzj
Gaia16apdSN 2017egm

Our follow-upLiterature
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Modified from 

Coppejans+ 2018

Comparison to other 
classes of massive 

stellar explosions from 
H-stripped progenitors

~8 GHz
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Coppejans+ 2018

Comparison to other 
classes of massive 

stellar explosions from 
H-stripped progenitors

Not on-axis GRB-like jets
But what about off-axis jets?
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Off-axis collimated jets?
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Off-axis collimated jets?
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Methodology

All radio
SLSNe-I
observations
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Jet light curves depend on:
● Energy
● Collimation angle
● Density of the surrounding 

medium
● Density profile of the surrounding 

medium
● Viewing angle
● Microphysical shock parameters

Procedure:
● Modelled light curves with high-resolution 2D relativistic hydrodynamical 

jet simulations (Boxfit v2, van Eerten+ 2012)
● Generated a grid of models for these parameters
● Used radio limits to rule out certain parameters

Methodology

Coppejans+ 2018



  

Jet constraints

Coppejans+ 2018
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Results: Constraints on off-axis jets

Coppejans+ 2018
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Constraints on a central engine
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Constraints on uncollimated outflows

● Radius ( L
νpp

, νp
p 
)

● Magnetic field ( L
νpp

, νp
p 
)

● Mass loss rate ( L
νpp

, νp
p
, t

p
 
 
)

… following Chevalier 1998, 
Chevalier & Fransson 2006, 
Soderberg+ 2012

L
νpp

νp
p Constrained these properties with SLSN-I 2017egm

For a SSA spectrum:
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Constraints on uncollimated outflows
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Constraints on uncollimated outflows
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How do we proceed?



  

Do Hydrogen poor Super-luminous Supernovae launch jets?

● In this sample we rule out on-axis jets of the kind detected in GRBs
● If the SLSNe-I in this sample have off-axis GRB-like jets, then:

● the jets have E
k,iso

<1053 erg, and the progenitors had Ṁ<10-4 M
o
y-1

● we rule out off-axis jets at densities and energies equivalent to the higher 
end of the range shown by GRBs

● If the SLSNe-I in this sample have off-axis jets collimated to 30o, then the jets 
have E

k,iso
<1053 erg, and the progenitors had Ṁ<10-5 M

o
y-1

More observations needed:

● Nearby systems
● Earlier times
● Later times

Summary

Constraints on uncollimated outflows:

● SLSNe-I radio limits rule out emission of the kind seen in relativistic SNe
● The deepest SLSN-I limits rule out emission of the kind found in faint 

uncollimated GRBs (except for GRB 060218) and many SNe
● If SLSN 2017egm was a spherical outflow, then it had an energy < 1048 erg~



  

Extra slides

Coppejans+ 2018
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