The dusty progenitor of the Type II SN 2017eaw

Charlie Kilpatrick UC Santa Cruz

C. Kilpatrick

Shocking Supernovae 2018

28 May 2018

SN 1993J (IIb) **SN 1987A (II-pec)** Yellow (early K I) supergiant Blue (B3 I) supergiant progenitor progenitor

Sonneborn+87; Gilmozzi+87; Podsialowski92

Shocking Supernovae 2018

Aldering+94; Van Dyk+02

Progenitor Stars of Type II Supernovae

F814W

SN 2003gd (9 Mpc; Smartt+2004)

SN 2005cs (7 Mpc; Li+2006)

HST enables detection of massive progenitor stars up to \sim 30-40 Mpc

28 May 2018

Mostly RSG progenitors of SNe II-P

There are >~20 confirmed progenitor stars of SNe II

SN 2012aw SN 2012ec (10 Mpc; Van Dyk+2013) (17 Mpc; Maund+2013)

What happens to the high-mass RSGs?

No RSG progenitor stars with $\log L > 5.2$ are observed to exist

C. Kilpatrick

We know RSGs with $\log L = 5.2-5.5$ (Minit = 17-25) exist (AH Sco, UY Sct, KW Sgr, etc.). Why no SN progenitor stars in this range?

Shocking Supernovae 2018

24 23 22

A mass threshold for successful SNe from RSGs?

C. Kilpatrick

Statistically this distribution is consistent with an IMF drawn from stars with $4.3 < \log L < 5.2$ (roughly Minit = 8-17)

Is this a fundamental limit and high-mass **RSGs collapse to BH?**

Credit: NASA/OSU See Adams+2017

Dust obscuration

Dust can hide optical light from RSGs into the mid-infrared (where pre-explosion imaging is usually unavailable/unconstraining)

But these stars might be completely enshrouded in dust and go undetected

C. Kilpatrick

Shocking Supernovae 2018

At very high CSM densities, RSGs could be SN IIn progenitors (like VY CMa; Smith+2008)

SN 2017eaw in NGC 6946

D=6.7 Mpc

Host to >10 SNe and SN impostors over the past century

Shocking Supernovae 2018

SN 2017eaw in NGC 6946

Kilpatrick+18

C. Kilpatrick

Progenitor of SN 2017eaw

Progenitor system is in multiple epochs of preexplosion imaging from optical to mid-infrared

Shocking Supernovae 2018

C. Kilpatrick

Progenitor of SN 2017eaw

C. Kilpatrick

Progenitor of SN 2017eaw

SEDs of RSGs with dusty winds peak near 1.5-2 microns

The intrinsic SED is reddened and dust emission features are observed in mid-infrared spectra

Dusty RSG SEDs

Shocking Supernovae 2018

28 May 2018

Start with stellar SED and pass flux through CSM that absorbs/re-emits

Simultaneously fit L*, T*, **CSM extinction**, **Tdust**

Progenitor of SN 2017eaw

Shocking Supernovae 2018

Snapshot of SN 2017eaw progenitor system 200 days before core-collapse • $\log L_* = 4.9, T_* = 3350 \text{ K}, M = 13 \text{ Msun}$ Total dust mass is >10-5 Msun • Mass-loss rate is 10-6 Msun/yr

With caveats:

- Degeneracy in T* and CSM need better MIR constraints
- We have no constraint on the dust geometry or wind speed
- Systematic uncertainties in model: for stellar rotation, metallicity and dust composition, grain size distribution

Spectra of SN 2017eaw probe environment

Resolution = 100,000

For sufficiently bright SNe (V < 13.5 mag), we can resolve ~2 km/s

1.2 1.0 f_Å (normalized) 0.8 0.6 0.4 0.2 0.0

Spectra of SN 2017eaw probe environment

C. Kilpatrick

- The SN 2017eaw pre-explosion counterpart is consistent with a 13 Msun RSG
- Its SED cooled with time as mid-infrared emission increased, consistent with an expanding photosphere due to a dusty wind
- High-resolution spectra reveal a structured wind environment around SN 2017eaw
- SN 2017eaw is a relatively normal SN II, suggesting that all SN II progenitor systems need to be considered in the context of dust obscuration and complex circumstellar environments

Summary

C. Kilpatrick

Shocking Supernovae 2018

28 May 2018

