Progenitors and Explosion Mechanisms of Stripped-Envelope Supernovae

Keiichi Maeda Dept. Astron, Kyoto University

Stripped-Envelope SNe (SESNe)

A Rough Picture

Beyond the standard mass loss

LBVs leading to a WR w/ a giant eruption in a few years? SNe 2009ip (Fraser+15, Graham+17), 2015bh (Elias-Rosa+16, Thoene+17), 2016bdu and 2005gl (Pastorello+17). 2005gl w/ progenitor (LBV progenitor for IIn) (Gal-Yam+Leonard 09). # Relation to SESNe? # Late burning stages? (how envelope reacts? See Ouchi's poster)

SN properties

The LC time scale + velocity (roughly) similar. ⇒ Similar Ejecta mass and Explosion Energy. The peak luminosity slightly higher for SNe Ic. ⇒ (Relatively) larger M(⁵⁶Ni) for SNe Ic (?). Exception: Broad-lines SNe Ic (not for this talk).

SN Properties

Similar, details depend on analysis. $M_{ej} < 4M_{\odot} \Rightarrow M_{ms} < 20M_{\odot} \Rightarrow binary (?)$

SNe IIb: The best studied SESNe

"Strong" cooling (extended H) 1993J & 2013df SNe IIb comparison 17 V Magnitude -16SN 1993J Absolute SN 2008ax SN 2011dh SN 2013df -15Van Dyk+ 2014 -200 20 40 Day Since V Maximum

Similar spectra & peak LC ⇒ similar progenitor mass and energetics

Progenitor diversity (no RSG, no WR)

The progenitor mass range largely consistent with SNe IIp. Hydrogen stripping sequence ~ Diversity in radius

4 YSG progenitors among 5 best-studied cases

"Classical" YSG: Expanding rapidly towards red supergiants after leaving the main sequence, spending only a few thousand years in that phase.

SN 2011dh: Van Dyk+ 2013

(Originally) not considered as a "SN progenitor", but most of IIb progenitors.

BSG progenitor: SN 2008ax

Pre-SN point source (Crockett+ 2008) indeed consists of multiple stars (need for deep post-SN disappearance image). SN had faded below the "progenitor" flux ⇒ Blue Supergiant progenitor.

Binary Evolution Model: Progenitors

"Standard" binary models naturally explain/predict the diversity in the progenitors.

Companion (candidates)

Binary predictions: O/B companion (mass transfer should be there) Companion candidates commonly seen (at least no negative evidence, except for one object...)

A big issue – Cas A

No bright companion detected. Deep upper limit.

Kerzendorf+ 17, Kochanek 17

	$A_V = 10.6 \text{ mag}$	$A_V = 15 \text{ mag}$
Main Sequence companion	below M0	below K5
Stripped Stars	not allowed	
White Dwarfs	allowed	
Single Star	Stars with > $30M_{\odot}$ exist in the neighbourhood	
Disrupted binary	allowed	
Pre-explosion Merger	allowed	
Neutron Star	allowed	
Black hole	allowed	

Table 4: Progenitor scenarios that are not ruled out by the presented data for two estimates of extinction

An armature's discovery by luck. **Extremely fast rise:** ~ 1 mag in 40 min (\Leftrightarrow ~ 1 mag in 10 days in SN peak, even faster than the post-breakout "cooling").

Confirming the basic picture of breakout

Estimated progenitor:

He core ~ 5 M_{\odot}, H env.~ 0.1M_{\odot}, R~300R_{\odot}, M_{ms}~20M_{\odot} Consistent with the detected progenitor candidate. Confirming the basic mechanism of the SB. (but could be some CSM: ~ 6 x 10⁻⁴ M_{\odot}/yr in the final hrs?)

Progenitor radius

days "post-breakout cooling: Shock-deposited energy" $T \propto (Vt/R_0)$ Brighter for larger

weeks "⁵⁶Ni-heating" No information on the progenitor radius

Enhanced mass loss in the final decades?

The first "flash spectroscopy" as reported for SN IIb 2013cu. Follow-up samples all for SNe II (Yaron+ 17, Khazov+ 17, ...). Simply bias? (other SNe IIb spectra after > 2 days) ⇒ need more "first 24hrs" for SESNe.

"Smooth" mass loss in the larger scale

Even for SNe lb/c: Chevalier+Fransson 06

SN 2005ip

SN 2006bo

SN 2006id

SN 2006aa

SN 2008fa

SN 2010jl

60

70

Supernova	α	β	Age	References
			(days)	
1983N	-1.0	-1.6	30 - 300	1
1984L	-1.0	-1.5	100 - 200	2
1990B	-1.1	-1.3	70 - 200	3
1994I	-1.0	-1.3	20 - 800	4
2001ig	-1.06	-1.5	70 - 700	5
2002ap	-0.9	-0.9	4 - 20	6
2003L	-1.1	-1.2	100 - 400	7
$2003 \mathrm{bg}$	-1.1	-2	60 - 1000	8

Some Modulations (e.g., Wellons+ 12) and outliers, but largely follow ~ r^{-2} . Smooth mass-loss responsible for the stripping, or a sequence of eruptions in ~ 1000 yr timescale?

SNe IIb w/ strong late-time CSM interaction

SNe IIb 1993J & 2013df: CSM interaction visible at ~ 1 year. It is consistent with the smooth r^{-2} distribution. For their CSM density, CSM becomes dominant @ ~ year. # Radio is smooth, no strong variation (\neq eruption).

Progenitor HR vs. CSM (in the last 100 yrs)

Ouchi & KM 17

Binary Evolution Model: CSM

Progenitor R vs. mass loss

Binary does predict

-2

Diversity in progenitor radius (different H-stripping)
the R - mass loss relation (in the last 100 yrs).

A candidate progenitor of SN Ib

Direct detection difficult (expected progenitor too blue). The first detection of a candidate in 2013: iPTF13bvn

Massive Wolf-Rayet? $(M_{ms} > 20M_{\odot})$ (Cao+ 13)

SN emission indicates a compact progenitor, but less massive (e.g., Bersten+14, Kuncarayakti+ 14).

Controversy?

SN lb iPTF13bvn

HST observation at ~2 yrs. Progenitor gone. Revised phot. \rightarrow less massive. (Folatelli+ 16; Eldridge+Maund 16). **Consistent w/ binary**, but UV limit for a companion (< 20M_{\odot})

Folatelli+ 2016

SNe Ib w/ strong CSM interactoin

SN "Ibn" 2006jc: He emission lines (He-rich CSM). Pre-burst in 2004. SN Ibn "variety". Some Ibn different than canonical SNe Ib? (e.g., Moriya+KM 16) SN Ib 2014C: Strong Halpha developed at ~ 0.5 yr. Cavity? Not like He-rich CSM. More like normal, timing of "eruptions"? (Margutti+ 17) SNe IIb \Rightarrow *Ib* \rightarrow *IIn* \Rightarrow Ib \Rightarrow *Ibn* \Rightarrow Ic or different population?

A (first) candidate progenitor of SN Ic

 $M_{ms} \sim 47-80 M_{\odot}$? (\Leftrightarrow a tension to a sample of SN Ic properties)

Stellar clusters in a similar galaxy M74

"Optically-found" SNe lb/c seem to have the ejecta of $< 4M_{\odot}$. If $M_{NS} \sim 1.4M_{\odot}$, $M_{CO} < 5-6M_{\odot}$ ($M_{ms} < \sim 25M_{\odot}$). ... But similar properties w/ other SNe. More likely a less massive progenitor? (cluster member or multiple stars? e.g., situation for 08ax).

An upper limit for companion of SN Ic 2012ap

No good companion candidate detected for SNe Ib/c so far. 2012ap (Ic-BL): < ~10M_☉ MS (Zapartzs+ 17)

iPTF13bvn (Ib): < \sim 20M $_{\odot}$ MS (Folatelli+ 16) Binary model survives; we need detection.

Stripped-envelope SNe (Z = 0.0055)

SN Ic w/ strong CSM interaction

SN Ic 2017dio: Evolved into SN IIn in a month (Ic⇒IIn). CSM increasing outward (not r⁻²). Some SNe IIn may host SNe Ic (WR, C+O).

SN Ic w/ strong CSM interaction

Not much mass between "SN Ic" and "H-rich CSM" \Rightarrow Where is He??? 1. Revisit to the He-rich CSM interaction characteristics # But Ibn is there. 2. Perhaps binary companion # How the companion knows the primary is going to explode. 3. Otherwise, further unknown in the (single star) final evolution? # but not the "final" eruption.

And, how common is it? (could be abundant behind SNe IIn?)

Summary

- SNe IIb/Ib/Ic share similar properties as SNe (at least to the first order).
- Binary scenario well-developed for SNe IIb.
 - Progenitor, companion, mass loss.
 - Largely "smooth" CSM for the last ~ 10-1000 yrs.
 - No particular need of the eruption for the H-rich envelope stripping, but does not reject it.
- Less clear for SNe Ib/c; no strong argument against binary interaction scenario, but may require something else.
 - − SN Ib \Rightarrow IIn may indicate a role of the eruption? Ibn???
 - SN Ic ⇒ IIn: further challenge, perhaps companion mass-loss important for SNe IIn.